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Paramagnetic Pro pert ies of U nsymmet rica I Transit ion - metal Complexes 

By Malcolm Gerloch and Robert F. McMeeking, University Chemical Laboratories, Lensfield Road, 
Cambridge CB2 1 EW 

A model and procedures are described which permit the calculation of optical and e.s.r. spectra and magnetic 
susceptibilities of pn, dn, or f a  electron systems for any basis chosen as free-ion terms and/or states relating to a 
molecule of any geometry. Methods are 
described for calculating magnetic susceptibilities and g values in molecules whose symmetries do not predetermine 
the orientation of their principal molecular properties. 

Ligand fields are parameterized within the angular-overlap model. 

PAULING'S spin-only formula for the magnetic moments 
of transition-metal complexes and subsequent general 
refinements incorporating orbital contributions have 
been very useful for qualitative enquiries into co- 
ordination number, formal oxidation state, and bond 
type. More limited success, however, for much greater 
theoretical and experimental effort, has been achieved in 
quantitative interpret ation of paramagnetism. Ligand- 
field theory in its various forms still appears to offer the 
only viable theoretical basis for calculation of suscepti- 
bilities and g values. Two main requirements of models 
in this area may be identified: first the models must be 
capable of reproducing observed properties virtually 
exactly, and secondly a chemical appreciation of the 
parameters the models employ must be apparent. The 
models almost invariably involve too many parameters 
to be used validly with average powder magnetic 
moments alone and so single-crystal paramagnetic 
anisotropies must surely constitute a minimum sus- 
ceptibility data set ; e.s.r. and electronic-absorption 
spectra are obviously desirable measurements too. 
Interelectronic repulsion, spin-orbit coupling, and 
orbital-reduction factors are common variables in many 
electron calculations, but ligand-field parameters fre- 
quently furnish most degrees of freedom in the models 
and are most subject to obscurity in their chemical 
significance. 

Many studies of magnetic anisotropies have been 
concerned with magnetically axial systems ; for example, 
tetragonally or trigonally distorted octahedra or tetra- 

hedra or Cqo and D3h five-co-ordinate molecules. Mole- 
cular symmetries leading to parallel and perpendicular 
susceptibilities are often presumed, based on idealized 
descriptions of the metal co-ordination sphere. It is 
desirable that the number of parameters such approxim- 
ations involve Is small and the hope, sometimes expressed 
but more often implicit, is that the errors of the idealiz- 
ations will affect parameter values in some small and 
average way. While it is likely that such hopes are not 
in vain for spectral studies where eigenvalues are of 
predominant concern, the situation for magnetism is 
much less certain, calculations requiring knowledge of 
eigenvectors also. In any case such models have hardly 
been studied and idealizations to higher symmetry are 
most often made because of the computational difficulties 
associated with the more general case. We are concerned 
here, then, with the paramagnetism of molecules pos- 
sessing any syininetry or, indeed, none whatever. 

Conventional crystal-field parameterization schemes 
may be subdivided into two types. Symmetry-defined 
parameters merely reflect the degrees of freedom required 
by symmetry, the conventional Dq, Ds, and Dt of D a  
systems being typical. An alternative approach, which 
attempts separation of the radial parameters from 
ligand orientation, is exemplified by the use of Dq, Cp,  
and 8, for example, in a trigonally distorted (D3d) octa- 
hedron. Here 8 is the angle subtended by the three-fold 
axis and any &I-L bond in a point-charge calculation. 

&I. Gerloch and R. C. Slade, ' Ligand Field Parameters,' 
Cambridge University Press, 1973. 
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Representation of a ligand's influence on the metal as 
that of a point charge is a well known limitation of this 
approach and the frequent non-cylindrical nature of the 
field of any one ligand necessitates the view that 0 must 
be taken as a parameter, its variation in any calculation 
hopefully accommodating the inadequacies of the point- 
charge representation. Some success has been achieved 
with this approach and has been recently been discussed in 
detai1.l 

Corresponding treatments of molecules without sym- 
metry could be made. In the first case, definition of 
parameters corresponding to the degrees of freedom is 
equivalent to paramaterizing the expansion coefficients 
of a general crystal-field potential in terms of spherical 
harmonics and, in general, these coefficients are complex. 
Even where the number of such parameters may not be 
too large, little or no clear relation between them and the 
bonding or geometry can be obtained. Another pos- 
sibility is to assign Dq and C p  values as radial parameters 
to each ligand or ligand type and to parameterize all 
bond angles subtended by the metal. As all these 
angles must be treated as variables, following the dis- 
cussicn above and elsewhere,l the situation rapidly 
becomes cumbersome if not actually useless. For these 
reasons we prefer to use the angular-overlap model 
(a.0.m.) of Schaffer and J~rgensen."~ 

The a.0.m. assigns the origin of the crystal field to 
weak covalency in which the central assumption is 
proportionality of antibonding energies of pure metal 
wavefunctions to the squares of the appropriate metal- 
ligand overlap integrals. In common with conventional 
crystal-field models, the a.0.m. assumes knowledge of the 
angular forms of the metal wavefunctions but not their 
radial parts and also presumes nothing of the radial or 
angular parts of the ligand functions. The precise 
geometrical arrangement of the ligands is taken as data 
and bonding between the ligand and metal is character- 
ized into 0, x and, if necessary, 6 types. The model 
involves one-electron ~perators and is thus funda- 
mentally a ligand-field model. It has been reviewed in 
varying degrees of sophi~t ica t ion .~~*~~ 

We describe now a system for the calculation of ligand- 
field optical and e.s.r. spectra and of paramagnetic 
susceptibilities built from established theories in narrower 
contexts. We believe this is the first general approach 
applicable to molecules possessing little or no symmetry. 

RESULTS AND DISCUSSION 

The AnguZar-overlap Model.-The a.0.m. shares with 
other ligand-field models the aim of calculating metal- 
orbital energy differences in a complex within the 
general restriction to one-electron operators. A central 
assumption of the model is that the antibonding-orbital 
energies are determined by covalent perturbation weak 
enough to be proportional to the squares of appropriate 
overlap integrals. Contributions to these antibonding 

C. E. Sch%ffer and C. K. Jerrgensen, J .  Irzorg. Nuclear Chern., 
1058, 8, 143. 

C. E. Schaffer and C .  K. Jerrgensen, Mat. Fys. Medd. Kg l .  
Dan. Vid Selsk., 1965, 34, 13. 

energies from different ligands and from metal-ligand 
bonding modes of different symmetry classification (e.g. a 
and x) are deemed additive. Alternative descriptions of 
the axioms in the a.0.m. have been formalized4 and 
shown to correspond very closely with those of electro- 
statically based crystal-field theory, in their consequences 
if not in their conceptual origins. 

Specifically, we consider a group of ligands which may 
bond to a transition-metal atom using 0, x,, and TC,, bonds 
as defined by the local M-L moieties. For each ligand 
and each bonding symmetry type the a.0.m. assumes 
that the energy shift E* of any one metal d orbital is 
given by equation (I), where S ~ ~ ~ d i s  the diatomic overlap 

integral between the metal d orbital and the ligand 
orbital of symmetry t (0, x,, etc.) and A t d  is an angular 
factor expressing the fact that the chosen global co- 
ordinate frame of the metal atom is not generally 
coincident with the local frame to which the symmetry 
of the ligand functions are referred. Within the a.0.m. 
the diatomic overlap integrals are sequestered into the 
proportionality constants of (1) and we write (2). In 

E* = (At")2et 

general, we define one et parameter for each ligand type 
and for each bonding mode. For the exact octahedron 
involving G and n (x, xy here) bonding the relation (3) 

lODq = 3e, - 4e, t 3) 

has been e~tablished.~ The extra parameterization of 
the a.0.m. compared with the single degree of freedom 
required by Oh symmetry is clearly undesirable in this 
case. However, for a trigonally distorted octahedron 
with Dsd symmetry, for example, the familiar D,, 
DO, and DT (or Dq, C p ,  and 0) parameters in symmetry- 
defined or point-charge models may be replaced by e, 
and e,. Generally, the degrees of parameterization 
involved by the electrostatic and a.0.m. approaches are 
similar but may not be related on a one-to-one basis. 
As discussed above and elsewhere the a.0.m. has the 
particular advantage of relating ligand-field parameters 
to identifiable features of structure and bonding. 

Schaffer 4 presented a general expression for one- 
electron matrix elements within the a.0.m. model as 
(4) in which V represents the total ligand-field (a.0.m.) 

operator, 9 are matrices transforming the real metal 
orbitals into each ligand co-ordinate frame, u and ZJ label 
real orbitals formed from complex orbitals with orbital 
quantum number I ,  and t designates the symmetry 
of bonding with respect to the local M-L axis. In 
general we wish to evaluate a.0.m. matrix elements in the 

C. E. Schaffer, Structure and Bondifzg, 1968, 5, 68. 
C. K. Jerrgensen, ' Modern Aspects of Ligand Field Theory,' 

North Holland, Amsterdam, 1971. 
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many electron bases conventionally described by terms 
or configurations. Harnung and Schaffer constructed 
an appropriate equation within a real-orbital basis set, 
as is convenient in the a.0.m. approach, using tensor- 
operator techniques. However, as we also need to 
evaluate matrix elements of the spin-orbit coupling 
operator within the same basis, it was convenient to use 
the better known equations relating to I J ,  M J )  quantiz- 
ation. 

Application to the Many-electron Problem.-A general 
ligand-field potential may be expressed as a super- 
position of spherical harmonics and many-electron matrix 
elements in a IJ, M J )  basis under each term in this 
expansion are given by tensor-operator theory as in (5) 

following the nomenclature and conventions of Brink 
and Satchler.7 Application of this equation is straight- 
forward and so the main ligand-field problem then de- 
volves into establishing relations between the expansion 
coefficients of the crystal-field potential and the molecular 
structure and bonding characteristics. This must be 
done at the one-electron level, most conveniently by 
comparing the e parameters of (4) with the c parameters 
in the one-electron tensor-operator equation (6). The 

the donor atom. The x and y directions were chosen 
parallel and perpendicular to local symmetry elements 
where possible : for example, parallel and perpendicular 
to the plane of a pyridine ligand. A co-ordinate trans- 
formation matrix may be established from crystallo- 
graphic data in terms either of direction cosines or 
Eulerian rotations. Using direction cosines, we write 
(8). The angles a, p, y * of the equivalent Eulerian 

X Y  

rotation can be derived from (8) using a standard trans- 
formation if desired. 

The 9 matrices of (4) transform the real metal 
orbitals in the global frame into the ligand frame. 
Schaffer and J0rgensen3 gave such a matrix for the 
transformation of d orbitals in terms of Eulerian rot- 
ations. An equivalent transformation matrix in terms 
of the direction cosines of (8) is given in (9). One such 
matrix must be constructed for each ligand in the 
complex. [For matrix elements within a pure orbital 
basis, i.e. pure d or f but not d and f, for example, any 
ligand-field operator is of even parity. Contributions 
from ligands related by a centre of inversion at the metal 
are identical. Accordingly, no new matrices need be 
constructed, a multiplicative factor of two being all that 
is required in centrosymmetric molecules.] As each 
ligand co-ordinate frame reflects the local symmetry 

x,, and xy bonding modes only, we may construct 
equation (10) in which the 15 independent matrix 
elements (e.g. (dWl Vldyz}) are related to nine a.0.m. 

( a Z L S J ~ ~ ~ V ~ a ' l L ' S J ' M ~ ' )  = 
j 'j ' ( x l L s J M J ~ y ~ ~ ( ~ ) ' a f z ~ ' s J ' ~ ~ ~ ' ~  (7) 

parameters (eo, e,,, and e,, for each ligand) by 
the quantities Aij which are appropriate products of the 
elements of (9). These same matrix elements may be 
evaluated in terms of the general expansion of the ligancl 

(6) and e of (4) a t  the one-electron level carries over to the 
many-electron problem. We present two routes for 
establishing this relation. 

Method A .  Let there be a global Cartesian frame 
X,Y,Z  centred on the metal and a local frame x,y,z 
centred on any one ligand. We adopted the convention 
that the ligand x axis is directed from the metal towards 

* We use a, P, Y without suffices for Eulerian angles, with 
suffices for direction cosines. 

S. E. Harnung and C. E. Schaffer, Structure and Bonding. 
1972, 12, 257. 

field for spherical harmonics as follows. The matrix 
elements in (6) may be evaluated by tensor-operator 

(10) Mi = Aije, 

7 D. M. Brink and G. R. Satchler, 'Angular ~ ~ ~ ~ ~ t ~ ~ , *  

H. Watanabe, ' Operator Methods in Ligand Field Theory,' 
Oxford, 1968. 

Prentice-Hall, New Jersey, 1966, p. 148. 
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theory using (11). For example, within a d-orbital 

basis the harmonics Y21 and Y41 are effective only in the 
matrix elements {ml = 21Vlml = 1) and {ZlVJO), 
vix. equations (12) and (13) where, for example, c21 is the 

expansion coefficient of Y21 in (6) and WZll0 is determined 
from (11) as (14). Equations (12) and (13) thus furnish a 

= - (G) 5 -4 5($*-(&)* (14) 

simultaneous pair for the evaluation of c21 and ~ 4 1  in 
terms of <21Vll) and {llVlO). 

Proceeding in a similar fashion for all ckq involves the 
solution of up to three simultaneous equations and yields 
Table 1. Equivalent expressions for terms with 4 
negative may be constructed using the relation (15),7 

cqk = (-l)q ck,-q* (15) 

a reminder that the matrix elements in the complex basis 
are generally complex. The relations in Table 1 are, of 
course, quite general, being applicable to molecules of 
any, or no, symmetry. 

The real and complex d orbitals are related within the 
Condon-Shortley phase convention by (16)-(20) from 

which the expansion coefficients c of (6) may be 
expressed in terms of the real crystal-field matrix 
elements by transformation of Table 1 to 2. Writing the 
expressions in Table 2 as the matrix equation (21) for the 

ci 2 BijMj (21) 

15 independent matrix elements M ,  then from (10) we 
have the required relations between the parameters of 
the a.0.m. and those of the general ligand-field expan- 
sion, z i x .  (22). In this way we may construct the 

Ci  = BijAjkek (22) 

crystal-field expansion in terms of spherical harmonics 
equivalent to a given molecular geometry parameterized 
by the a.0.m. technique. 

J.C.S. Dalton 
It is clear that there are a number of parallels between 

the method just described and that outlined by 
Horrocksg As he pointed out, one is not restricted to 
the a.0.m. in the calculation of one-electron matrix 

TABLE 1 

General relations between ckq and complex matrix 
elements for d functions 

coo = %+(2<21 Vl2> + 2(11 q 1 >  + (01 VlO>) 
4x * 

c20 = - (6) P(21 v> - ( l l V l 1 )  - (01 vw 
c21 = (2) *(6&(21 V l l >  + < l l ~ l O > )  

elements within the real-orbital basis set. One could 
equally well use a generalized point-charge model or an 
LCAO-MO scheme with eigenvectors truncated to a 
pure d-orbital form. It is not clear from his paper how 
these calculations might readily be made, especially in 
low-symmetry situations. Also at the time of public- 
ation the problems associated with complex potentials 
had apparently not been solved. Horrocks also sug- 
gested that the real-orbital one-electron matrix elements 
themselves might provide an improved form of ligand- 
field parameterization. However, in the case of mole- 
cules of low symmetry it is not clear that these para- 
meters are related to features of chemical bonding in any 
more obvious a manner than the more usual crystal-field 
type parameters. 

Method B. The process described above involved 
comparison of matrix elements of the a.0.m. and of a 
general harmonic-expansion potential for a complete 
molecular complex. An alternative approach is to make 
this comparison for each M-L interaction followed by 
superposition. Let x',y',x' be a Cartesian frame centred 
on the metal, in parallel orientation and of identical 
handedness to that on the ligand x,y,x. Assuming it is 
possible, and we return to this point later, to orient the 
ligand axes parallel to ' symmetry-classified ' directions 
in the ligand while retaining x parallel to the M-L axis, 
the matrix of Va.o.m. is diagonal. For example, (z2- 
IV1x2) = e,, <xzlVlxx) = en,, etc. Substitution of 
these identities into Table 2 then yields, quite generally 
for d orbitals, Table 3. Thus Table 3 lists the relations 
between c of (6) and e of (4) for an individual M-L 
perturbat ion. 

Superposition of similar expressions for all the ligands 
in a complex is straightforward after their transformation 

0 W. Dew. Horrocks, jun., Inorg. Chem., 1974, 13, 2775. 
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into the common global frame X,Y,Z .  The c,tn of (6) are 
associated with spherical harmonics Y,tq in the crystal- 
field potential, which latter transform’ according to 
(23) 

There are three ways in which this method is more 
convenient than A. (i) It may be desirable to investigate 
the effects on spectra and magnetism of rotating any 
ligand about its M-L axis. In  method B this may be 

where obtained by multiplying the  right-hand sides of the 
expressions in Table 3 by:ea@, retaining the original B 
matrix. Method A is much less direct. (ii) Extension 

standard d(P) matrices being tabulated by several of the computational system to f-electron systems is also 
a u t h o r ~ . ~ J ~  Application * of (23) to ckq (ligand) yields simple in method B. A table, equivalent to Table 2, 

Qqt? (a  Py) = e-Wa+qr)dp,qk ( p) (24) 

TABLE 2 
General relations between crzp and real matrix elements for d functions 

(a) Realiparts of ckq. 

‘20 = - 

c21 = - 

c22 = - 

‘40 = 

c41 = 2 

~ 4 2  = 2 

c43 = 

‘44 = 

(b) Imaginary parts of ckq 

coo = Cao 

c21 = 

C Z 2  = - 

Cq1 = 2 

Cp2 = 2 

c43 = 

Cq4 = - 

the desired relation between the c and e parameters for 
the given ligand in the global frame; superposition of 
contributions from all ligands may then be made. 

TABLE 3 
General relations between Gkq and e parameters for 6, x,, 

and xy bonding to d orbitals in ligand reference frame. 
All ckn are real; remainder are zero 

coo = %f(e, + enx + eny) 

c20 = (:) *(2e, + en, -F en,’) 

c,, = c2-2 = (g) ‘(enX - e i , )  

t 4 0  = (g) ‘(6e, - 4enx - 4e,) 

Cp2 = 64-2 = (2) *(en, - env) 

relating c of (6) to complex matrix elements forf orbitals 
may be constructed using (ll), as above. The equiva- 
lent of Table 3 is then derived using the transformation 
for cs and 7c bonding, expressions (25 and (26) being 

JW = p,o> (25) 

(26) (- 1)”/24 (- 1)”24 

(Ih,> I b Z > )  = (ILO IJ, -1)) 
((-1)%/2+ (-1)””iZt) 

derived from a more general one by Harnung and 
Schaffer,g recast into the phase convention of Condon and 

* It must be remembered that we are comparing matrix ele- 

lo H. A. Buckmaster, Canad. J .  Phys., 1964,42, 386; 1966,44, 
ments rather than transforming a potential operator explicitly. 

2525. 
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S h ~ r t l e y . ~  This procedure is, of course, common to 
both methods A and B. No more algebra is required for 
method B, however, while A requires the construction of 
an f-orbital transformation matrix equivalent to (9), a 
tedium we prefer to avoid. (iii) The consequences of 
' misdirected valency ' are most readily seen in method 
B. In the case of a chelating ligand, for example, it 
may be suitable to regard the donor-atom B orbital as not 
directed exactly towards the metal. In such circum- 
stances the chosen ligand axes with z directed from metal 
to donor atom may preclude rigorous classification of 
M-L overlap with respect to symmetry. The ligand CJ 

orbital may overlap, say, with both the metal dza and 
d,  orbitals and the resulting Va.o.m. matrix is no longer 
diagonal. Not only do further harmonics, and hence 
ckp, enter into the list of expressions in Table 3, but also 
extra e parameters describing ' cross a-sr; ' bonding 
become necessary. We do not pursue the matter 
further, however, merely noting that the appearance of 
the additional harmonics is particularly clear in method 
B. 

T h e  Com$lete Ligand-Jield Problem.-The total ligand- 
field calculation requires diagonalization of a given 
IJ,MJ> basis under the Hamiltonian (27). The system 

we adopted permits definition of the basis functions as 
any combination of free-ion spectroscopic terms and/or 
states. The two-electron electrostatic perturbation- 
matrix elements were computed directly from appro- 
priate reduced-matrix elements listed by Neilson and 
Koster [equation (28)l .ll The spin-orbit coupling 

C(ctLS1 IF'] Ia'L'S'} 8 ~ ~ ~ 8 , & 3 j j ~ 8 ~ ~ ~ ~ ~  (28) 
k 

matrix was evaluated using relation (29). Reduced- 
matrix elements for this operator as for the crystal-field 

= q- l ) -J -~ ' -~[z( l  + 1)(21 + l)]' 

expression (5) were from the same source.ll In common 
with usual practice in ligand-field calculation, both 
interelectron repulsion and spin-orbit matrices were 
calculated within a spherically symmetric approximation 
appropriate to free ions; this is necessary in the interests 
of minimal parameterization. 

Matrices for the interelectron repulsion operator (two 
for d orbitals), one spin-orbit matrix, and one matrix for 
each harmonic [and hence c of (6)] in the ligand-field 

11 C. W. Neilson and G. F. Koster, ' Spectroscopic Coefficients 
for the p, dn, and fn Configurations,' MIT Press, Cambridge, 
Massachusetts, 1963. 

potential were constructed once only for the given basis 
and stored. Calculations were then made for many 
combinations of the Fk, <, and e parameters in which the 
first step is computation of the associated c parameters. 
Copies of the stored matrices were multiplied by the 
appropriate Fk, <, and c parameters and summed to yield 
a, generally complex, matrix for the complete perturb- 
ation (27). Diagonalization furnishes eigenvalues and 
eigenvectors for comparison with optical spectra and for 
the calculation of magnetic susceptibilities and e.s.r. g 
values, where appropriate. 

Paramagnetic Sztsceptibility .-The usual expression for 
calculation of magnetic susceptibilities, first derived by 
Van Vleck,12 presupposes knowledge of the orientation 
of the principal molecular susceptibilities. For mole- 
cules lacking the symmetry necessary to predetermine 
these directions, we require a more general susceptibility 
expression which we now derive. 

We generally write a second-rank tensorial relation 
between the magnetic field H ,  applied to an assemblage 
of molecules, and the resulting magnetization M ;  the 
susceptibility tensor x is a function of temperature 
[equation (30)]. Here we use the standard tensor 

Mu = XUflHfl (30) 
notation in which Greek letters used as non- 
repeating suffices refer to elements of the set (x,y,z), 
but when repeated imply summation over the entire set. 
The magnetization Mu, in direction a, for a system of 
identical molecules is given by (31). The perturbation 

expansion of Ei, the energy of the ith level, in a generally 
oriented magnetic field is, to second order, as in (32) in 

Et = Eio + ( i l ~ u l i )  Hu + 

which the basis set has been chosen such that all groups 
of levels degenerate before the perturbation are diagonal 
with respect to pH, and j  sums over all levels where Ejo # 
Eio. Differentiating (32) with respect to components of 
the magnetic field yields (33). An expression for 

magnetization valid to second order can be obtained by 
substitution of (32) and (33) into (31). Much simplific- 
ation is possible if  we follow the treatment of Van Vleck l2 

in that we consider small magnetic fields only and write 
(34) and after substitution consider only terms linear in 

e-Ei/kT - e-EiO/kT - (<ilPuli)Hu/~~)I (34) 

1 2  J. H. Van Vleck, ' Theory of Electric and Magnetic Suscepti- 
bilities,' Oxford University Press, 1932. 
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field. This is done because residual magnetization dis- 
appears at zero field and because coefficients of higher 
powers of field in (34) are negligibly small except at very 
low temperatures. On substitution we obtain (35). 

Since the choice of basis set is a function of field direction 
a, we must write (36). If the magnetization can be 

M a  = AafiWHB (36) 

related to the magnetic field by a second-rank suscepti- 
bility tensor as in (30), expression (37) must hold for 
all field directions. It follows, therefore, that a general 

AaBaHP = Xa@P (37) 

element of the susceptibility x is given by (38) where a’ 

is along the direction p, say. Accordingly, we obtain 
(39) where the basis set is diagonal with respect to p ~ .  

2 l-EcO/kT (39) 
i 

We note that (39) reduces to Van Vleck’s expression 
when applied to  a diagonal element of the susceptibility 
tensor. 

Only the temperature-dependent part of the suscepti- 
bility in (39) is affected by the choice of basis set, of 
course. However, it is possible to replace (40) in (39) 

2 <4pali> (il~li> (40) 
2 

where we use a diagonalized basis set by the more 
general expression (41) where i’ sums over all elements of 

a completely general basis and k’ all elements where 
Ek.O = E,to. The equality between (40) and (41) may 
be proved by considering all matrix elements within a 
degenerate set. Matrices A’ (a‘ik = {i’lpalk’)) and 
B’ (b’fk = (i’lpfllk’}) are not, in general, diagonal. 
There exists, however, a unitary transformation (42) 

(42) B = U-lB‘U 

relating the general matrix B’ to the diagonal form B. 
The same unitary transformation when applied to A’, 

(43), may not, however, yield a diagonal matrix. Defin- 
ing expressions (44) and (45) gives (46). As the trace of a 

A = U-lA‘U (43) 
C’ 2 A’B’ (44) 

c = U-lC’U (45) 

(46) C = A B  

matrix is invariant under a unitary transformation, we 
have (47). Matrix B is diagonal and so the left-hand 

i k  i k  
(47) 

side of (47) reduces to (40), while the right-hand side 
retains the more general form (41). 

Moreover, verification of (37) reduces to proving 
relation (48) within a degenerate set where the basis is 

2 ( i Ipal i> < i I d i > H ~  = 2 2 <iI~aIk> <hIt~fiIi>Hs (48) 
a i k  

diagonal with respect to pH, recalling that the left-hand 
side of (48) derives from (35) and the right-hand side 
from (39). This reduces to showing that expression 
(49) is applicable, which is self evident when we recall our 

1 2 GlPaIk) <kIPfil;>Hfi = 0 (49) 
i k f i  

definition of the basis set such that (50) is obtained. We 

<klPpli>HB = 0, i # k (50) 

also note the symmetric nature of (47) and hence the 
proof that XaP = u a ;  the symmetry of x was not 
obvious from (39). 

Application of the general susceptibility equation (39), 
using the equality of (40) and (41), to the eigenvectors of 
(27) for the six independent components of x and sub- 
sequent diagonalization gave the principal molecular 
susceptibilities and their orientations with respect to the 
global molecular co-ordinate frame X ,  Y,Z.  While the 
process is straightforward in principle, the lengthy 
nature of the calculation requires optimization of pro- 
gramming techniques if the whole investigation of low- 
symmetry systems is to be practicable. In addition to 
conventional computing tactics, there are two main 
ways in which computation may be reduced. 

Writing a matrix element of (41) more fully as (51), 

basis basis 

<ill*ali> = ( 2 ap+Apal 2 a,+,> 
P 

f 2 c %*a, <+PltLal+P) (51) 
P 9  

we note that matrix elements of p within the original 
basis q5 need be calculated once only, subsequently being 
multiplied by the coefficients a defining the vectors of 
(27). Accordingly, a t  the stage where the matrices of 
interelectron repulsion, spin-orbit coupling, and crystal 
field are constructed in the original basis, matrices of 
Lp, L,, Sz, and S, are also set up and retained. They are 
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frame X,Y,Z, with respect to the crystallographic axes 
a,b,c) and of the crystal class. Comparison with 
experiment then takes place at the experimental level 
of crystal susceptibilities and anisotropies. In the case 
of monoclinic crystals, of course, the angle + subtended 
by x1 and a (as defined in ref. 16) is a further element for 
comparison between theory and experiment. Generally, 
the lower the crystal symmetry class the more indepen- 
dent data for comparison. The triclinic system thus 
allows calculation and observation of three principal 
susceptibilities and three orientations or, equivalently, 
all six independent components of the x tensor in (30). 
As measurements on triclinic crystals have been rather 
difficult in the past, the monoclinic system offers an 
acceptable compromise in the desire to maximize experi- 
mental information. The advent of the present system 
for susceptibility computation in unsymmetrical mole- 
cules, however, stresses the benefits that improved 
experimental techniques would bring to the study of 
triclinic crystals. 

Electron Spin Resonance g Values.-Let us define an 
e.s.r. g value by the first-order Zeeman splitting of a 
degenerate manifold as gp,H between adjacent levels. 
We write D as the sum of the squares of the matrix 
elements diagonal in pH, from which we note that for a 

D = 1 (<ilPaIi>Hu)2 (61) 
i 

technique for efficient calculation is to note that matrix 
elements in (39) always occur in products of two and that 
the magnetic-moment operator (60) involves multiplic- 

vu = P o ( G  + 2Sa) (60) 

ation of the orbital operator by Stevens’ orbital-reduction 
factor 14315 k,  but not the spin operator. As we restricted 
our system to isotropic orbital-reduction factors in the 
interests of reducing the degree of parameterization, we 
may separately accumulate, over all relevant levels in 
(39), components in x to  be multiplied by k2, by k ,  and 
by unity, corresponding to parts involving L2, LS,  or 
S2, respectively. This has the considerable advantage 
that repeat calculations for various k values are extremely 
fast. Similarly, components of first- and second-order 
Zeeman effects to be divided by T ,  or not, in (39) were 
reserved separately. In this way repeat calculations 
for various temperatures require the minimum of further 
computation. 

Comparison of experimental and theoretical suscepti- 
bilities in our earlier work was made at the molecular 
level.ls This seemed natural when comparing what are 
fundamentally molecular properties and was possible in 
the axially distorted molecules then studied. The 
transformation from the observed crystal-susceptibility 
tensor to  the corresponding molecular property is simple 
when the orientations of the principal molecular sus- 
ceptibilities may be inferred from molecular symmetry. 
In molecules with little or no symmetry such information 
is not available and no significant transformation of 
experimental data to the molecular level is possible. 
Accordingly, the final step in the theoretical-suscepti- 
bility calculation is to transform from the molecule to the 
crystal, taking due note of the given molecular orient- 
ation in the lattice (Le. the orientation of the global 

l3 M. Gerloch and D. J .  Mackay, J. Ckem. SOC. ( A ) ,  1971, 2605 

14 K. W. H. Stevens, PYOC. Roy. SOC., 1953, A219, 542. 
and refs. therein. 

doublet level in the absence of the magnetic field, 
H2g2 = 2 0 ,  and for an equally split triplet, H2g2 = 
D/2,  etc. Expanding (61) gives (62). Now the form of 

D = dBHb (62) 

(63) dl3 = 2 <i lPul9  <ilPl3li>Ha 
z 

ds is exactly the same as that on the left-hand side of 
(48). So we may write (64) where, retaining the 
nomenclature of the earlier section, expression (65) is 

dB = Tu@a (64) 

applicable. Thus (66) is obtained. We have already 

D = TUBHaH~ (66) 

demonstrated that T is a symmetrical second-rank 
tensor which can always be diagonalized by a suitable 
choice of axis frame. Thus, from the intermediate 
parameters calculated during the susceptibility calcul- 
ation, we have all the information required to calculate 
principal g values of isolated multiplets and their 
directions. This assumes, of course, exactly equal 
splitting under a magnetic field, which may not be the 
case for high multiplicities but is trivially true for the 
most important case of isolated doublets. It should 

l5 M. Gerloch and J .  R. Miller, Progr. Inorg. Chew., 1968, 10, 1. 
16 See, for example, M. Gerloch and P. N. Quested, J. Ckem. 

SOC. ( A ) ,  1971, 2308. 
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be noted that the procedure described does not allow 
calculation of the signs of the principalg values. In fact, 
in molecules of low symmetry guB # gSu and it is impos- 
sible to diagonalize the g property. We calculated g2 
values which permit computation only of the magnitudes 
of splittings, but for magnetic fields in quite general 
directions. 

Summary.-Calculations of spectral, e.s.r., and parti- 
cularly susceptibility properties of t ransition-met al 
complexes have hitherto been generally limited to 
molecules possessing a fairly high degree of symmetry. 
Frequently small deviations from high symmetry have 
been ignored in approximations whose reasonableness 
has been based on a view of the geometric structure 
rather than on the consequent electronic properties. 
There have long been suspicions that anomalies in the 
parameters derived within a given compound or in 
relations within a series might be due to (unspecified) 
second-co-ordination-sphere effects or to a general, if 
partial, breakdown of ligand-field theory. After so 
much theoretical and calculational effort has been 
devoted to these systems, such ambiguities, anomalies, 
or simple ignorance are embarrassing. It has been clear 
for some time that a system for the calculation of 
electronic properties of these molecules, unhampered by 
suspect approximations regarding symmetry, defined an 
urgent need in this area. The present paper describes 
such a system. 

Two main problems have had to be solved. The 
first was the choice of a ligand-field model capable of 
treating molecules with any co-ordination number and 
geometry but without an undue degree of parameteriz- 
ation and in which the relations between the parameters 
and chemical bonding might be reasonable and apparent. 
The angular-overlap model appears to satisfy these re- 
quirements far better than the older point-charge approach 
used with molecules of higher symmetry. We have 
described how the formation of the a.0.m. may be linked 
to that of a general expansion of the ligand-field 
Hamiltonian in spherical harmonics in such a way that 
the well established techniques of tensor-operator 
calculus may be exploited in many-electron problems. 

l7 B. Bleaney and D. J. E. Ingram, Proc. Roy. Soc., 1951, A208, 
143. 

The second major point of concern was the calculation of 
magnetic tensors and e.s.r. g values for molecules in 
which the directions of principal susceptibilities are not 
defined by symmetry and hence are unknown a priori. 
A generalized form of Van Vleck's equation for suscepti- 
bility has been derived and several techniques have been 
described which reduce the amount of necessary com- 
putation to a level of practicability. 

The procedures described here permit calculation of 
optical and e.s.r. spectra and of magnetic suscepti- 
bilities of any f i n ,  dn, or f" electron system for any basis 
chosen as free-ion terms and/or states relating to a 
molecule of any geometry. We mention just two 
examples of systems which were not previously capable 
of the proper study now afforded. The principal g 
values l7 and susceptibilities l6 of the nominally octa- 
hedral [Co(OH2)J2+ ion in Tutton salt are known to lie in 
unexpected and seemingly arbitrary directions with 
respect to the co-ordination geometry. Earlier theor- 
etical treatments were not capable of making explicit 
recognition of the orientation of the water molecules with 
respect to the Co-0 bonds and of calculating the mag- 
netic properties in the consequently very low-symmetry 
molecule. Similarly, calculation of molecular suscepti- 
bilities from the measured crystal properties 1 * 9 1 9  of 
trans-[Fe(py),(NCS),] on the assumption of D, symmetry 
or, a t  least, of one principal moment lying parallel to the 
SC_N-Fe-aCS axis produces inconsistent results using 
established methods described elsewhere.16 The 
' reasonable ' structural assumption of a special role for 
the SCE-Fe-NCS direction neglected the low symmetry to 
be noted when the orientation of the pyridine groups is 
recognized. Without the techniques described in this 
paper the problem could not have been solved. The 
studies of this and analogous systems we describe else- 
where l9 emphasize very strongly that structural details 
which may be negligible in some contexts must never 
be ignored if a significant understanding of magnetic 
and e.s.r. properties is desired. 
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